Changing How Batteries Are Produced – Lithium Battery Power 2012: Primet Precision’s NanoScission® process reduces costs and improves performance of Hybrid, Plug-In, and Electric Vehicles

Changing How Batteries Are Produced – Lithium Battery Power 2012: Primet Precision’s NanoScission® process reduces costs and improves performance of Hybrid, Plug-In, and Electric Vehicles
Source: Nanotechnology Now
November 30, 2012

Primet Precision CEO Larry Thomas announced the licensing opportunity at a press conference on Nov. 15 in New York.

“The cost associated with traditional manufacturing processes for electrode materials needed for lithium-ion batteries has been holding back electric vehicles since their introduction to the market,” Thomas said. “High cost and inefficient manufacturing naturally translates to higher costs to consumers. Primet’s process lowers that cost barrier. It will help to put electric vehicles on the same playing field as traditional vehicles from a price standpoint. That’s a game changer.”

Primet’s environmentally-friendly process technology offers dramatic savings – up to 85% reductions in both capital and operating costs for electrode material production, and with lower-cost raw materials than the industry uses today. And as electric vehicle sales grow to one million in 2015, as projected by the US Department of Energy, American consumers will be saving close to $1 billion a year, as well.

This means by deploying Primet’s NanoScission® technology, the average materials manufacturer will be saving more than $50 million on the cost of building a world-scale plant and over $10 million in annual operating costs. These savings can also be realized very quickly in retrofit and expansion of existing production facilities.

Normally, companies worry that low-cost means low performance. Not in this case, says Thomas. “NanoScission is that rare technology that offers both low cost and high-performance. Our commercial and government partners have verified that electrode materials produced by Primet have some of the highest performance they’ve seen, and the batch-to-batch consistency is excellent.”

Licensing packages are being prepared for immediate deployment in commercial facilities. Installing a production line in an existing facility capable of making 300 tons of electrode materials per year (enough to make 30,000 Toyota Prius battery packs) would require very low capital equipment expenditures, just a few million dollars. Companies employing the technology can expect a payback period on their investments of less than two years.

Best of all, implementing Primet’s technology would not require auto manufacturers to change anything in the design or construction of their batteries or vehicles, as Primet’s process simply allows suppliers to make the same materials at a large scale, at a lower cost, and with high performance.

Primet’s NanoScission® process technology relies on a broad portfolio of globally-filed and issued patents, as well as extensive trade secret knowledge on desirable particle features and the processes and equipment required to create them. This IP covers the entire production process for the conversion of base minerals into finished electrode powders and formulated slurries ready for battery fabrication. And Primet is continuing to advance its technology through extensive product and process development.

Primet’s process has been recognized by industry experts, US government laboratories, and the world’s leading battery producers as a step-change improvement over conventional technology for the production of advanced materials. The technology has been proven on a wide array of cathode and anode compositions that are in current use as well as next-generation high-voltage materials. Primet is ready to provide commercial quantities (e.g. 25 kg bags) of electrode materials made at its demonstration facility in Ithaca, NY, so the performance and cost advantages can be tested by our customers.

Parties interested in applying Primet’s technology may contact Primet at licensing@primetprecision.com .

Previous post:

Next post: